89 research outputs found

    鋳型非依存性DNAポリメラーゼを活用した金属錯体型人工DNAの酵素合成

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 塩谷 光彦, 東京大学教授 西原 寛, 東京大学教授 菅 裕明, 東京大学教授 小澤 岳昌, 東京大学准教授 佐竹 真幸University of Tokyo(東京大学

    Classical and Quantum Cosmology of Multigravity

    Get PDF
    Recently, a multigraviton theory on a simple closed circuit graph corresponding to the discretization of S1S^1 compactification of the Kaluza-Klein (KK) theory has been considered. In the present paper, we extend this theory to that on a general graph and study what modes of particles are included. Furthermore, we generalize it in a possible nonlinear theory based on the vierbein formalism and study classical and quantum cosmological solutions in the theory. We found that scale factors in a solution for this theory repeat acceleration and deceleration.Comment: 17 pages, 15 figures, RevTeX4.1, revised versio

    Fibroblast activation protein targeted near infrared photoimmunotherapy (NIR PIT) overcomes therapeutic resistance in human esophageal cancer

    Get PDF
    Cancer-associated fibroblasts (CAFs) have an important role in the tumor microenvironment. CAFs have the multifunctionality which strongly support cancer progression and the acquisition of therapeutic resistance by cancer cells. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment that uses a highly selective monoclonal antibody (mAb)-photosensitizer conjugate. We developed fibroblast activation protein (FAP)-targeted NIR-PIT, in which IR700 was conjugated to a FAP-specific antibody to target CAFs (CAFs-targeted NIR-PIT: CAFs-PIT). Thus, we hypothesized that the control of CAFs could overcome the resistance to conventional chemotherapy in esophageal cancer (EC). In this study, we evaluated whether EC cell acquisition of stronger malignant characteristics and refractoriness to chemoradiotherapy are mediated by CAFs. Next, we assessed whether the resistance could be rescued by eliminating CAF stimulation by CAFs-PIT in vitro and in vivo. Cancer cells acquired chemoradiotherapy resistance via CAF stimulation in vitro and 5-fluorouracil (FU) resistance in CAF-coinoculated tumor models in vivo. CAF stimulation promoted the migration/invasion of cancer cells and a stem-like phenotype in vitro, which were rescued by elimination of CAF stimulation. CAFs-PIT had a highly selective effect on CAFs in vitro. Finally, CAF elimination by CAFs-PIT in vivo demonstrated that the combination of 5-FU and NIR-PIT succeeded in producing 70.9% tumor reduction, while 5-FU alone achieved only 13.3% reduction, suggesting the recovery of 5-FU sensitivity in CAF-rich tumors. In conclusion, CAFs-PIT could overcome therapeutic resistance via CAF elimination. The combined use of novel targeted CAFs-PIT with conventional anticancer treatments can be expected to provide a more effective and sensible treatment strategy

    Conventional Cancer Therapies Can Accelerate Malignant Potential of Cancer Cells by Activating Cancer-Associated Fibroblasts in Esophageal Cancer Models

    Get PDF
    Esophageal cancer is one of the most aggressive tumors, and the outcome remains poor. One contributing factor is the presence of tumors that are less responsive or have increased malignancy when treated with conventional chemotherapy, radiotherapy, or a combination of these. Cancer-associated fibroblasts (CAFs) play an important role in the tumor microenvironment. Focusing on conventional cancer therapies, we investigated how CAFs acquire therapeutic resistance and how they affect tumor malignancy. In this study, low-dose chemotherapy or radiotherapy-induced normal fibroblasts showed enhanced activation of CAFs markers, fibroblast activation protein, and α-smooth muscle actin, indicating the acquisition of malignancy in fibroblasts. Furthermore, CAFs activated by radiotherapy induce phenotypic changes in cancer cells, increasing their proliferation, migration, and invasion abilities. In in vivo peritoneal dissemination models, the total number of tumor nodules in the abdominal cavity was significantly increased in the co-inoculation group of cancer cells and resistant fibroblasts compared to that in the co-inoculation group of cancer cells and normal fibroblasts. In conclusion, we demonstrated that conventional cancer therapy causes anti-therapeutic effects via the activation of fibroblasts, resulting in CAFs. It is important to select or combine modalities of esophageal cancer treatment, recognizing that inappropriate radiotherapy and chemotherapy can lead to resistance in CAF-rich tumors

    Notch Filter in 70 GHz Range for Microwave Plasma Diagnostics

    Get PDF
    A notch filter for the rejection of stray light from gigahertz range heating sources was developed to protect a vulnerable microwave plasma diagnostic system. As one of the applications, we consider the installation of the notch filter into the receiver of a collective Thomson scattering diagnostic in the Large Helical Device. Experimental observations indicate that two types of notch filters are required for main and spurious mode rejection; they have very narrow, steep shapes to avoid disturbing the diagnostic signal. On the basis of numerically simulated results, notch filters were fabricated, and their performance was evaluated. An attenuation level of 35 dB at 74.746 GHz with a 3 dB bandwidth of 0.49 GHz is achieved by two pairs of resonator cavities. This attenuation is acceptable in our study

    A prospective compound screening contest identified broader inhibitors for Sirtuin 1

    Get PDF
    Potential inhibitors of a target biomolecule, NAD-dependent deacetylase Sirtuin 1, were identified by a contest-based approach, in which participants were asked to propose a prioritized list of 400 compounds from a designated compound library containing 2.5 million compounds using in silico methods and scoring. Our aim was to identify target enzyme inhibitors and to benchmark computer-aided drug discovery methods under the same experimental conditions. Collecting compound lists derived from various methods is advantageous for aggregating compounds with structurally diversified properties compared with the use of a single method. The inhibitory action on Sirtuin 1 of approximately half of the proposed compounds was experimentally accessed. Ultimately, seven structurally diverse compounds were identified

    The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase

    No full text
    A metal-mediated base pair, composed of two ligand-bearing nucleotides and a bridging metal ion, is one of the most promising components for developing DNA-based functional molecules. We have recently reported an enzymatic method to synthesize hydroxypyridone (H)-type ligand-bearing artificial DNA strands. Terminal deoxynucleotidyl transferase (TdT), a template-independent DNA polymerase, was found to oligomerize H nucleotides to afford ligand-bearing DNAs, which were subsequently hybridized through copper-mediated base pairing (H–CuII–H). In this study, we investigated the effects of a metal cofactor, MgII ion, on the TdT-catalyzed polymerization of H nucleotides. At a high MgII concentration (10 mM), the reaction was halted after several H nucleotides were appended. In contrast, at lower MgII concentrations, H nucleotides were further appended to the H-tailed product to afford longer ligand-bearing DNA strands. An electrophoresis mobility shift assay revealed that the binding affinity of TdT to the H-tailed DNAs depends on the MgII concentration. In the presence of excess MgII ions, TdT did not bind to the H-tailed strands; thus, further elongation was impeded. This is possibly because the interaction with MgII ions caused folding of the H-tailed strands into unfavorable secondary structures. This finding provides an insight into the enzymatic synthesis of longer ligand-bearing DNA strands
    corecore